Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS omega ; 8(6):5349-5360, 2023.
Article in English | Europe PMC | ID: covidwho-2238893

ABSTRACT

The human Betacoronavirus SARS-CoV-2 is a novel pathogen claiming millions of lives and causing a global pandemic that has disrupted international healthcare systems, economies, and communities. The virus is fast mutating and presenting more infectious but less lethal versions. Currently, some small-molecule therapeutics have received FDA emergency use authorization for the treatment of COVID-19, including Lagevrio (molnupiravir) and Paxlovid (nirmaltrevir/ritonavir), which target the RNA-dependent RNA polymerase and the 3CLpro main protease, respectively. Proteins downstream in the viral replication process, specifically the nonstructural proteins (Nsps1–16), are potential drug targets due to their crucial functions. Of these Nsps, Nsp4 is a particularly promising drug target due to its involvement in the SARS-CoV viral replication and double-membrane vesicle formation (mediated via interaction with Nsp3). Given the degree of sequence conservation of these two Nsps across the Betacoronavirus clade, their protein–protein interactions and functions are likely to be conserved as well in SARS-CoV-2. Through AlphaFold2 and its recent advancements, protein structures were generated of Nsp3 and 4 lumenal loops of interest. Then, using a combination of molecular docking suites and an existing library of lead-like compounds, we virtually screened 7 million ligands to identify five putative ligand inhibitors of Nsp4, which could present an alternative pharmaceutical approach against SARS-CoV-2. These ligands exhibit promising lead-like properties (ideal molecular weight and log P profiles), maintain fixed-Nsp4-ligand complexes in molecular dynamics (MD) simulations, and tightly associate with Nsp4 via hydrophobic interactions. Additionally, alternative peptide inhibitors based on Nsp3 were designed and shown in MD simulations to provide a highly stable binding to the Nsp4 protein. Finally, these therapeutics were attached to dendrimer structures to promote their multivalent binding with Nsp4, especially its large flexible luminal loop (Nsp4LLL). The therapeutics tested in this study represent many different approaches for targeting large flexible protein structures, especially those localized to the ER. This study is the first work targeting the membrane rearrangement system of viruses and will serve as a potential avenue for treating viruses with similar replicative function.

2.
J Mater Sci ; 57(23): 10780-10802, 2022.
Article in English | MEDLINE | ID: covidwho-1899233

ABSTRACT

A micro-molecule of dimension 125 nm has caused around 479 million human infections (80 M for the USA) and 6.1 million human deaths (977,000 for the USA) worldwide and slashed the global economy by US$ 8.5 Trillion over two years period. The only other events in recent history that caused comparative human life loss through direct usage (either by human or nature, respectively) of structure-property relations of 'nano-structures' (either human-made or nature, respectively) were nuclear bomb attacks during World War II and 1918 Flu Pandemic. This molecule is called SARS-CoV-2, which causes a disease known as COVID-19. The high liability cost of the pandemic had incentivized various private, government, and academic entities to work towards finding a cure for this and emerging diseases. As an outcome, multiple vaccine candidates are discovered to avoid the infection in the first place. But so far, there has been no success in finding fully effective therapeutic candidates. In this paper, we attempted to provide multiple therapy candidates based upon a sophisticated multi-scale in-silico framework, which increases the probability of the candidates surviving an in-vivo trial. We have selected a group of ligands from the ZINC database based upon previously partially successful candidates, i.e., Hydroxychloroquine, Lopinavir, Remdesivir, Ritonavir. We have used the following robust framework to screen the ligands; Step-I: high throughput molecular docking, Step-II: molecular dynamics analysis, Step-III: density functional theory analysis. In total, we have analyzed 242,000(ligands)*9(proteins) = 2.178 million unique protein binding site/ligand combinations. The proteins were selected based on recent experimental studies evaluating potential inhibitor binding sites. Step-I had filtered that number down to 10 ligands/protein based on molecular docking binding energy, further screening down to 2 ligands/protein based on drug-likeness analysis. Additionally, these two ligands per protein were analyzed in Step-II with a molecular dynamic modeling-based RMSD filter of less than 1Å. It finally suggested three ligands (ZINC001176619532, ZINC000517580540, ZINC000952855827) attacking different binding sites of the same protein(7BV2), which were further analyzed in Step-III to find the rationale behind comparatively higher ligand efficacy. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07195-8.

SELECTION OF CITATIONS
SEARCH DETAIL